C-SAM超声扫描介绍————————————————————————————————————————————————————
超声扫描显微镜C-mode Scanning Acoustic Microscope简称C-SAM,是用于检测物体表面、内部区域及内部投影,产生高分辨率特征图像的检测技术。由于它能获得反映物体内部信息的声学图像而被广泛应用于无损检测领域。
超声波在介质中传播时,若遇到不同密度或弹性系数的物质,会产生反射回波,而此种反射回波强度会因材料密度不同而有所差异,扫描声学显微镜(SAM)利用 此特性来检出材料内部的缺陷并依所接收的信号变化将之成图像,超声换能器能发出一定频率(1MHz~500MHz)的超声波,经过声学透镜聚焦,由耦合介质传到样品上。超声换能器由电子开关控制,使其在发射方式和接收方式之间交替变换。超声脉冲透射进入样品内部并被样品内的某个界面反射形成回波,其往返的 时间由界面到换能器的距离决定,回波由示波器显示,其显示的波形是样品不同界面的反射强度与时间(或距离)的关系。通过控制时间窗口的时间,采集某一特定 界面的回波而排除其它回波,超声换能器在样品上方以二维方式作机械扫描,通过改变换能器的水平位置,在平面上以接卸扫描的方式产生一幅反射声波随反射平面 分布的图像。
Sam利用声波对于不同介质反射或者透射强度的不同来进行测试。C-sam是c型反射,可以用来扫描某一层的性状,其分析如下:一般情况下如果聚焦的2层之间区域是黑色的说明这相交面一直到器件表面某处有空洞;如果是红色的,就代表在所检测的那层相交面上是有空洞的。颜色是根据其特有color map来判断,从正波到负波颜色变化为白色一红色,可以通过图片左侧颜色条看出来。白色代表遇到从密度小的物质进入密度很大的物质,红色正好相反,黑色代表遇到空气或者真空,声波没有反射或者透射过去,导致接收声波的探头没有接收到信号。T-scan就是through scall.是检测体内,也就是从上表面到下表面所有层面的检测。根据color map,如果发现黑色区域就代表包含区域的垂直体内含有空洞。
C-SAM超声设备展示
————————————————————————————————————————————————————
仪器能力 探头频率 :5~500MHZ 有效行程(X×Y×Z): 350×350×80mmm 最大扫描速度:1,000mm/s 扫描最小间距:0.5μm |
应用范围
————————————————————————————————————————————————————
超声波扫描主要用于检测电子元器件、LED、金属基板的分层、裂纹等缺陷(裂纹、分层、空洞等);通过图像对比度判别材料内部声阻抗差异、确定缺陷形状和尺寸、确定缺陷方位。
C-SAM是的重要技术手段之一,与X射线分析具有互补性,X-ray只是穿透,可以看到Voids, Crack, Delamination,但不能判断出缺陷在哪个层面,C-sam技术则有更多优势:
b)对平直界面不连续性缺陷十分灵敏
c)特别适合塑料封装器件内部分层分析,也适合器件、印制电路板上热沉焊接的分析
d)结合破坏性手段,可以用于焊点的分析。对设备配置和操作员经验有一定要求
e)复杂情况下的超声分析结果需要其它技术手段比对
非破坏性、无损伤检测内部结构,可分层扫描、多层扫描,实施、直观的图像及分析,缺陷的测量及百分比的计算,可显示材料内部的三维图像,对人体是没有伤害的,可检测各种缺陷(裂纹、分层、夹杂物、附着物、空洞、孔洞、晶界边界等) 晶元面处脱层,锡球、晶元、或填胶中之裂缝,晶元倾斜,各种可能之孔洞(晶元接合面、锡球、填胶…等), 覆晶构装之分析。
目前用于电子封装或组装分析的主要是C模式的超声扫描声学显微镜,它是利用高频超声波在材料不连续界面上反射产生的振幅及位相与极性变化来成像,其扫描方式是沿着Z轴扫描X-Y平面的信息。因此,扫描声学显微镜可以用来检测元器件、材料以及PCB与PCBA内部的各种缺陷,包括裂纹、分层、夹杂物以及空洞等。如果扫描声学的频率宽度足够的话,还可以直接检测到焊点的内部缺陷。典型的扫描声学的图像是以红色的警示色表示缺陷的存在,由于大量塑料封装的元器件使用在SMT工艺中,由有铅转换成无铅工艺的过程中,大量的潮湿回流敏感问题产生,即吸湿的塑封器件会在更高的无铅工艺温度下回流时出现内部或基板分层开裂现象,在无铅工艺的高温下普通的PCB也会常常出现爆板现象。此时,扫描声学显微镜就凸现其在多层高密度PCB无损探伤方面的特别优势。而一般的明显的爆板则只需通过目测外观就能检测出来。
C-SAM超声扫描示例————————————————————————————————————————————————————